On a tiling conjecture of Komlo's for 3-chromatic graphs

نویسندگان

  • Ali Shokoufandeh
  • Yi Zhao
چکیده

Given two graphs G and H , an H -matching of G (or a tiling of G with H) is a subgraph of G consisting of vertex-disjoint copies of H . For an r-chromatic graph H on h vertices, we write u = u(H) for the smallest possible color-class size in any r-coloring of H . The critical chromatic number of H is the number cr(H)= (r− 1)h=(h− u). A conjecture of Koml# os states that for every graph H , there is a constant K such that if G is any n-vertex graph of minimum degree at least (1− (1= cr(H)))n, then G contains an H -matching that covers all but at most K vertices of G. In this paper we prove that the conjecture holds for all su<ciently large values of n when H is a 3-chromatic graph. c © 2003 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs

In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...

متن کامل

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

Hedetniemi’s conjecture and fiber products of graphs

We prove that for n ≥ 4, a fiber product of n-chromatic graphs over n-colourings can have chromatic number strictly less than n. This refutes a conjecture of Y. Carbonneaux, S. Gravier, A. Khelladi, A. Semri, Coloring fiber product of graphs. AKCE Int. J. Graphs Comb. 3 (2006), 59–64.

متن کامل

-λ coloring of graphs and Conjecture Δ ^ 2

For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 277  شماره 

صفحات  -

تاریخ انتشار 2004